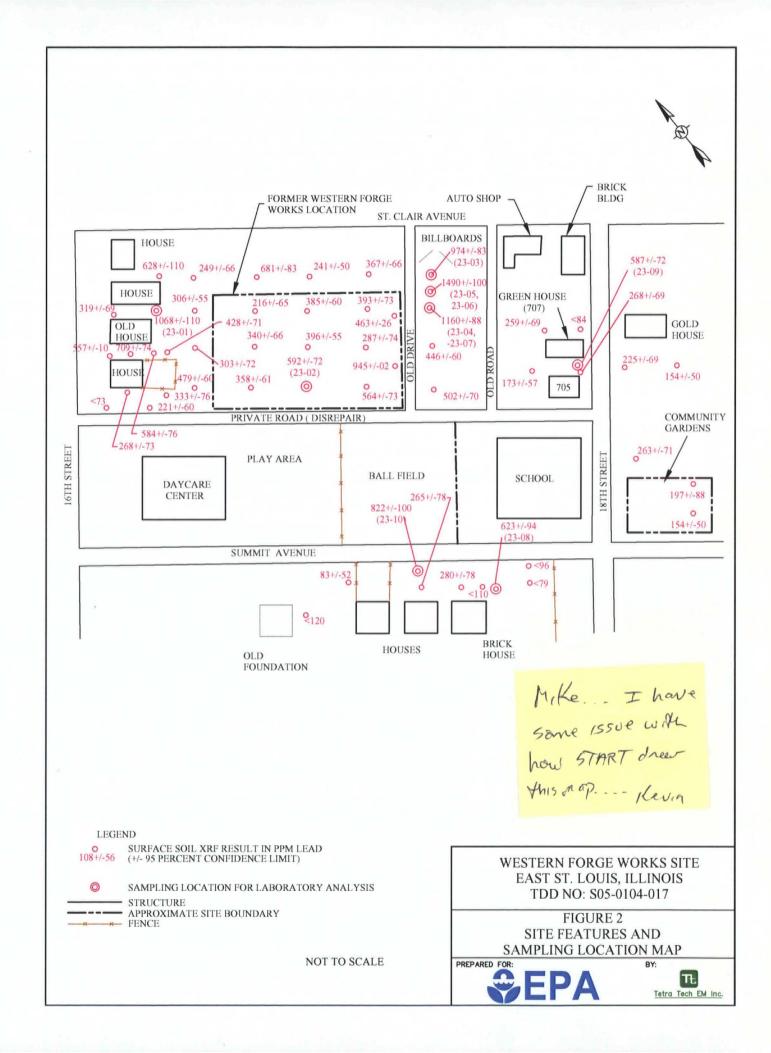
SITE ASSESSMENT REPORT WESTERN FORGE WORKS SITE EAST ST. LOUIS, ST. CLAIR COUNTY, ILLINOIS

Prepared for

U.S. ENVIRONMENTAL PROTECTION AGENCY
Region 5 Emergency Response Branch
C/O Crab Orchard National Wildlife Refuge
8588 Route 148
Marion, IL 62959

TDD No.: S05-0104-017 Date Prepared: 14 Jun 01 Contract No.: 68-W-00-129 Prepared by: Tetra Tech EM Inc. START Project Manager: Joseph M. Parish Telephone No.: (314) 892-6322 U.S. EPA On-Scene Coordinator: **Kevin Turner** Telephone No.: (618) 997-0115


CONTENTS


<u>on</u>	<u>Page</u>
INTRODUCTION	
SITE BACKGROUND	
SITE ASSESSMENT ACTIVITIES	
ANALYTICAL AND FIELD SCREENING RESULTS	
POTENTIAL SITE-RELATED THREATS	1
SUMMARY	
<u>ndıx</u>	
PHOTOGRAPHIC LOG VALIDATED ANALYTICAL RESULTS IDPH SITE INVESTIGATION DATA MAP	
FIGURES	
<u>re</u>	Pag
SITE LOCATION MAPSITE FEATURES AND SAMPLING LOCATION MAR)
TABLES	
<u></u>	<u>Pag</u>
SAMPLING SUMMARYANALYTICAL RESULTS SUMMARY	

1.0 INTRODUCTION

The Tetra Tech EM Inc. (Tetra Tech) Superfund Technical Assessment and Response Team (START) has prepared this site assessment report in accordance with the requirements of Technical Direction Document (TDD) No. S05-0104-017, which the U.S. Environmental Protection Agency (U.S. EPA) assigned to START. The scope of this TDD was to conduct site assessment activities at the Western Forge Works site in East St. Louis, St. Clair County, Illinois. START was tasked to conduct a site assessment, which involved soil sample collection to delineate the extent of contamination, documentation of on-site activities, including photodocumentation (see Appendix A), analytical data validation (see Appendix B), and preparation of a site assessment report. This site assessment report discusses the site background, site assessment activities, analytical results, and potential site-related threats, and presents a summary.

2.0 SITE BACKGROUND
The Western Forge Works site is located on the south side of St. Clair Avenue between 16th and 18th Streets in East St. Louis, Illinois, at latitude 38° 37'28.5" North and longitude 90° 08'11" West (see Figure 1). The site is located in a mixed residential and commercial area. An elementary school is located south of the site, which is bordered by residences on all sides and a daycare center to the west (see Figure 2). The owners of the site since 1992 are Clifton and Regina Moore, who reside at 3700 State Street in East St. Louis, Illinois.
The site is the former location of Western Forge Works, a metal forging business formerly located in the abandoned lot east of the daycare center. No other information has been provided concerning the site's operating history. The site is being investigated by U.S. EPA Region 5 at the request of the Illinois Department of Public Health (IDPH) under the Mississippi Gateway Initiative Lead Grant to determine whether site-related contaminants pose a threat to human health or the environment as part of an ongoing effort to identify and remediate Brownfield properties in major metropolitan areas.
The IDPH performed a site investigation in 1999 that included limited sampling for total lead. Investigation results showed lead contamination in the soil as high as 761 parts per million (ppm) on site and as high as 1,217 ppm at a residence along 16 th Street (see the figure in Appendix C).

3.0 SITE ASSESSMENT ACTIVITIES
Site assessment activities were conducted at the Western Forge Works site on 24 and 25 Apr 01. START met with U.S. EPA personnel at the site on 24 Apr 01. The START field crew consisted of Joe Parish, Art Currier, Brian Schlieger, and Jason Massey from Tetra Tech, and Keith Hughes from Project Resources, Inc. (PR). U.S. EPA on-scene coordinators (OSC) included Kevin Turner, Mike Harris, and Tom Cook.
START was tasked to document site conditions, collect soil samples, and prepare and submit samples for laboratory analysis. PR was tasked to screen the site with a NITON™ x-ray fluorescent (XRF) spectrometer.
The site was marked into a loose grid, and potentially sensitive areas identified by the OSC for sampling were indicated using survey flags or marking paint. During the 2 days of this investigation, XRF spectrometer readings (with 95 percent upper and lower confidence limits) were taken at each grid location (approximately every 30 to 50 feet) and at marked or flagged locations on bare soil that had been cleared of vegetation and humus. Off-site locations at sensitive areas, such as residential yards, were also chosen by the OSC for sampling, flagged or marked, and screened using the XRF spectrometer.
XRF spectrometer readings for lead were compared with the U.S. EPA Region 9 preliminary remediation goal (PRG) for residential soil. The guidelines below were generally followed, but the samples submitted for laboratory analysis and parameters analyzed for were chosen by the OSC. Locations where XRF spectrometer readings for lead exceeded the PRG of 400 milligrams per kilogram (mg/kg) were marked as potential sampling points for laboratory analysis of Resource Conservation and Recovery Act (RCRA) metals (see Figure 2). Locations where XRF spectrometer readings exceeded 1,000 ppm for lead were marked for auger sampling to a depth of 24 inches below ground surface (bgs). At sampling locations 023-04 and 023-05, soil samples were screened with the XRF spectrometer at increments of 6 inches. Screened samples that had contained the highest lead levels (samples 023-06 and 023-07) were analyzed for RCRA metals, toxicity characteristic leaching procedure (TCLP) lead, polychlorinated biphenyls (PCB), semivolatile organic compounds (SVOC), volatile organic compounds (VOC), and pH.
On 25 Apr 0.1, samples were collected using a stainless-steel auger and homogenized in pie pans for field screening at the ground surface and in increments of 6 inches down to 12 inches bgs at the locations shown in Figure 2. The auger was decontaminated after collection of each sample using Alconox and

0	•
	water with a final, deionized water rinse. Selected samples were placed in sample containers and
0	submitted for laboratory analysis based on the field screening results and at the discretion of the OSC. Based on field screening results, no samples were collected from below 6 inches bgs. XRF readings and
	sampling locations are summarized in Table 1 and shown in Figure 2. Site assessment field work was completed on 25 Apr 01. Samples were stored on ice and submitted to the Environmetrics, Inc., laboratory in St. Louis, Missouri, on 27 Apr 01.
	iabolatory in St. Louis, Missouri, On 27 Apr OT.
0	•
0	
	4

TABLE 1 SAMPLING SUMMARY

Sampling Date	Time	Sample No.	XRF Spectrometer Reading (ppm)	Description	Requested Analyses
25 Apr 01	1130	023-01	1,068 +/- 110	Surface	RCRA metals
25 Apr 01	1140	023-02	592 +/-72	Surface	RCRA metals
25 Apr 01	1700	023-03	974 +/-83	Surface	RCRA metals
25 Apr 01	1710	023-04	1,160 +/-88	Surface	RCRA metals
25 Apr 01	1711	023-05	1,490 +/-100	Surface	RCRA metals
25 Apr 0·1	1717	023-06	4,330 +/-220	0-6 inches bgs at sample No. 023-05 location	RCRA metals, TCLP lead, SVOCs, VOCs, PCB, and pH
25Aprıl 01	UK	NS	157 +/-52	6-12 inches bgs at sample No. 023-05 location	NS
25 Apr 01	1740	023-07	2,760 +/-170	0-6 inches bgs at sample No. 023-04 location	RCRA metals, TCLP lead, SVOCs, VOCs, and pH
25Aprıl 01	UK	NS	511 +/-84	6-12 inches bgs at sample No. 023-04 location	NS
25 Apr 01	1847	023-08	623 +/-94	Surface	RCRA metals
25 Apr 01	1850	023-09	587 +/-72	Surface	RCRA metals
25 Apr 01	1900	023-10	822 +/-100	Surface	RCRA metals

Notes:

+/- = Indicates 95 percent confidence limit for XRF spectrometer reading

bgs = Below ground surface

NS = No sample submitted for analysis

PCB = Polychlorinated biphenyl

ppm = Part per million

RCRA = Resource Conservation and Recovery Act

SVOC = Semivolatile organic compound

TCLP = Toxicity characteristic leaching procedure

UK = Unknown

VOC = Volatile organic compound

XRF = X-ray fluorescent

4.0 ANALYTICAL AND FIELD SCREENING RESULTS

All samples were analyzed for RCRA metals, and selected samples were analyzed for TCLP lead, pH, VOCs, SVOCs, and PCBs as indicated in Table 1. Samples were selected for TCLP lead, pH, VOC, SVOC, and PCB analyses based on high lead field screening values and at the discretion of the OSC. Table 2 summarizes the detected analytical data corrected to dry weight. The laboratory data were compared to the U.S. EPA Region 9 PRG tables for residential soil.

The analytical data confirm the field screening data finding that elevated levels of lead are present on site and in the site area at concentrations above the PRG of 400 mg/kg. The maximum lead concentration detected is 5,720 mg/kg. Although the lead levels exceed the PRG, the TCLP results for lead were well below the regulatory level of 5 milligrams per liter (mg/L) for the two samples analyzed (see Table 2).

As indicated in Table 2, several other compounds exceeded the U.S. EPA Region 9 PRGs for residential soil. These included arsenic, the polycyclic aromatic hydrocarbons (PAH) benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, indeno (1,2,3-cd) pyrene, and dibenz(a,h)anthracene at maximum levels of 3.3, 3.8, 3.2, 0.96J and 0.36J mg/kg, respectively. PAHs, although they have no practical use, are associated with the incineration of organics, a common practice in industrial areas. All of the above PAHs are considered carcinogenic. The arsenic concentrations in all samples submitted exceeded the cancer endpoint PRG of 0.39 mg/kg, but was below the noncancer PRG of 22 mg/kg. Trace amounts of other SVOCs and VOCs were detected at less than 1 mg/kg, but no concentrations exceeded PRGs. The soil was slightly alkaline, having a pH of 7.19 to 7.59 standard units (SU), which is unremarkable. These results are consistent with industrial areas.

XRF screening results show that at 17 out of 34 screened points (50 percent) at the former metal forging property and at adjacent properties from 16th Street to the west, "old-road" to the east, St. Clair Avenue to the north, and "private road" to the south, the 400-mg/kg PRG for lead was exceeded. Only 3 out of 19 screened points outside these boundaries exceeded the PRG (see Figure 2). These results suggest that the contaminant source is near the site location and that contaminant migration has occurred, but it cannot be

TABLE 2
ANALYTICAL RESULTS SUMMARY

	Sample No. ^{2,b}									
Analyte	023-01	023-02	023-03	023-04	023-05	023-06	023-07	023-08	023-09	023-10
Total Arsenic	9.93J	Î1.5Ĵ	10:6J	, 10.3J	14.2J	10J	13.9J	7.92J	5.67J	4.13J
Total Barium	277	269	231	202	350	344-	345	203	115	. 206
Total Cadmium	3.82J	1 86J	3 84J	5.23	4 14	2.79J	4 2	3.71J	3 19J	6 38
Total Chromium	165	25.1	13 4	141	` 12.2	9 09	15 3	21.8	169	9 37
Total Lead	2,513	1,083	804	890	5,720	3,696	3,983	515	603	1,150
TCLP Lead	NA	NA	NA	NA	NA	1 9 mg/L	l 6 mg/L	NA	NA	NA
Total Mercury	0.7	07	18	03	06	07	2 3	0.2	0.5	06'
Total Selenium	<47	<47	<4.7	8 77B	<47	<4.7	<47	<47	9 54B	<47
Total Silver	<06	<0-6	<06	<06	<06	<06	<06	0 777B	<06	<0.6
pН	NA	NA	NA	NA	NA	7 19 SU	7 59 SU	NA	NA	NA
PCBs	NA	NA	NA	NA	NA	<0 039	NA	NA	NA	NA
Trichlorofluoromethane	NA	NA	NA	NA	NA	0 0092J	0 0055J	NA	NA	NA
Acetone	NA	NA	NA	NA	NA .	0 140J	0.036J	NA	NA	NA
Methylene Chloride	NA	NA	NA	NA	NA	0 110J	0.073J	NA	NA	NA
1,1,1-Trichloroethane	NA	NA	NA	NA	NA ·	0.020J	0.014J	NA	NA	NA
Toluene	NA	NA	NA	NA	NA	0 062J	0 060J	NA	NA	NA
Ethylbenzene	NA	NA	NA	NA	NA	0.0033J	0 0039J	NA	NA	NA
and p-Xylenes	NA	NA	NA	NA	NA	0 0086J	0 011J	NA	NA	NA
o-Xylenes	NA	NA	NA	NA	NA	0 0035J	0 0045J	NA	NA	NA
1,2,4-Trimethylbenzene	NA	NA	NA	NA	NA	0.004J	0 0058J	NA	NA	NA
Naphthalene	NA	NA	NA	NA	NA	0 410J	<4 38	, NA	NA	NA
2-Methylnaphthalene ^c	NA	NA	NA	NA	NA	0 440J	<4 38	NA	NA	NA
Acenaphthylene	NA	NA	. NA	NA	NA	0 320J	<4 38	NA	NA	NA
Dibenzofuran	NA	NA	NA	NA	NA	0 760J	<4 38	NA	NA	NA
Fluorene	NA	NA	NA	NA	NA	0 460J	<4 38	NA	NA	NA
Phenanthrenec	NA	NA	NA	NA	NA	9.1	4.7	NA	NA	NA
Anthracene	NA	NA	N'A	N'A	NA	2 2J	1.0J	NA	NA	NΆ
Carbazole	NA	NA	NA	NA	NA	0 88J	<4 38	NA	N:A	NA
Fluoranthene	NA	NA	NA	NA	NA	8 9	47	NA	NA	NA
Pyrene	NA	NA	NA	NA	NA	72	4 0J	NA	NA	NA
Benzo(a)anthracene	NA	NA	NA	NA	NA	3.3	1.8J	NA	NA	NA
Chrysene	N'A	NA	NΆ	NA	NA	3 5	2.0J	NA	NA	NA

TABLE 2 (Continued) ANALYTICAL RESULTS SUMMARY

	Sample No. ^{1,b}									
Analyte	023-01	023-02	023-03	023-04	023-05	023-06	023-07	023-08	023-09	023-10
Benzo(b)fluoranthene	NA	NA	NA	NA	NA	3:8	2.1J	NA	NA	NA
Benzo(k)fluoranthene	NA	NA	NA	NA	NA ~	1.8J	1-11	NA	NA	NA
Benzo(a)pyrene	NA	NA	NA	NA	NA	3:2	1:7J	NA	NA	NA
Indeno(1,2,3-cd)pyrene ^c	NA	NA	NA	NA	NA	Q:96J	0 5 I J	NA	NA	NA
Dibenz(a,h)anthracene	NA	NA	NA	NA	NA	0:36J	<4 38	NA	NA	NA
Benzo(g,h,ı)perylenec	NA	NA	NA	NA	NA	0 94J	0 5J	NA	NA	NA

Notes:

< = Less than reported detection limit

PCB = Polychlorinated biphenyl

J = Estimated value less than practical quantitation limit

PRG = Preliminary remediation goal

mg/L = Milligram per liter

SU = Standard unit

NA = Not analyzed

TCLP = Toxicity characteristic leaching procedure

- a All results are in milligrams per kilogram unless otherwise indicated.
- b Shaded values exceed U.S. EPA Region 9 PRGs.
- c No PRG established

Ц	
	proven that the site is the source of contamination because the highest concentrations of lead were detected
	along the site perimeter outside the site boundaries (see Figure 2). Field screening of samples at the perimeter of the site collected using stainless-steel augers to a depth of 12 inches bgs and analytical results for samples
Ö	No. 023-06 and 023-07 from 6 inches bgs also suggest that contamination may not extend below 6 inches bgs. More data are needed to validate this conclusion.
0	
B	·
0	-
·	
0	
	11

hazardous substances or pollutants, or contaminants. Residential properties as well as a scho daycare facility, and businesses are located immediately adjacent to the site. In addition, a hospital located within 1 mile of the site. The site is located within a densely populated major metropolital area. During the investigation, START observed that the site has no fences, warning signs, or other bar to prevent public access. Sampling at nearby residences, adjacent properties, and within the site boundaries shows levels of contamination above the U.S. EPA Region 9 residential soil PRGs for lead, arsenic, and PAHs as discussed in Section 4.0. Exposure pathways consist of (1) direct contact with contaminated soil (2) inhalation of airborne contaminants through windblown particulates. Contaminant levels and locations also suggest potential contaminant migration through the runoff and air pathways. Beca groundwater was not sampled, no conclusion can be drawn about the groundwater pathway from investigation. • Weather conditions that may cause hazardous substances or pollutants or contaminants to		5.0 POTENTIAL SITE-RELATED THREATS
 Actual or potential exposure to nearby human populations, animals, or the food chain from hazardous substances or pollutants, or contaminants. Residential properties as well as a scho daycare facility, and businesses are located immediately adjacent to the site. In addition, a hospital located within 1 mile of the site. The site is located within a densely populated major metropolita area. During the investigation, START observed that the site has no fences, warning signs, or other bar to prevent public access. Sampling at nearby residences, adjacent properties, and within the site boundaries shows levels of contamination above the U.S. EPA Region 9 residential soil PRGs for lead, arsenic, and PAHs as discussed in Section 4.0. Exposure pathways consist of (1) direct contact with contaminated soil (2) inhalation of airborne contaminants through windblown particulates. Contaminant levels and locations also suggest potential contaminant migration through the runoff and air pathways. Beca groundwater was not sampled, no conclusion can be drawn about the groundwater pathway from investigation. Weather conditions that may cause hazardous substances or pollutants or contaminants to migrate. The East St. Louis area receives a substantial amount of precipitation (approximately 3 inches per year or more). Most precipitation occurs during Spring and Autumn. In addition, thunderstorms common during the Summer greatly accelerate erosion and runoff. All these conditions contribute to the potential for exposure and for contaminants to migrate off site. The unavailability of other federal or state response mechanisms to respond to the release. IDPH requested assistance from the U.S. EPA Region 5 under the Mississippi Gateway Initiative 	Parag	raph (b)(2) of Title 40 of the Code of Federal Regulations (40 CFR), Section 300.415, lists factors to
 Actual or potential exposure to nearby human populations, animals, or the food chain from hazardous substances or pollutants, or contaminants. Residential properties as well as a scho daycare facility, and businesses are located immediately adjacent to the site. In addition, a hospital located within 1 mile of the site. The site is located within a densely populated major metropolita area. During the investigation, START observed that the site has no fences, warning signs, or other bar to prevent public access. Sampling at nearby residences, adjacent properties, and within the site boundaries shows levels of contamination above the U.S. EPA Region 9 residential soil PRGs for lead, arsenic, and PAHs as discussed in Section 4.0. Exposure pathways consist of (1) direct contact with contaminated soil: (2) inhalation of airborne contaminants through windblown particulates. Contaminant levels and locations also suggest potential contaminant migration through the runoff and air pathways. Beca groundwater was not sampled, no conclusion can be drawn about the groundwater pathway from investigation. Weather conditions that may cause hazardous substances or pollutants or contaminants to migrate. The East St. Louis area receives a substantial amount of precipitation (approximately 3 inches per year or more). Most precipitation occurs during Spring and Autumn. In addition, thunderstorms common during the Summer greatly accelerate erosion and runoff. All these conditions contribute to the potential for exposure and for contaminants to migrate off site. The unavailability of other federal or state response mechanisms to respond to the release. IDPH requested assistance from the U.S. EPA Region 5 under the Mississippi Gateway Initiative 	consi	dered when determining the appropriateness of a potential removal action at a site. The discussion
hazardous substances or pollutants, or contaminants. Residential properties as well as a scho daycare facility, and businesses are located immediately adjacent to the site. In addition, a hospital located within 1 mile of the site. The site is located within a densely populated major metropolital area. During the investigation, START observed that the site has no fences, warning signs, or other bar to prevent public access. Sampling at nearby residences, adjacent properties, and within the site boundaries shows levels of contamination above the U.S. EPA Region 9 residential soil PRGs for lead, arsenic, and PAHs as discussed in Section 4.0. Exposure pathways consist of (1) direct contact with contaminated soil (2) inhalation of airborne contaminants through windblown particulates. Contaminant levels and locations also suggest potential contaminant migration through the runoff and air pathways. Becagroundwater was not sampled, no conclusion can be drawn about the groundwater pathway from investigation. Weather conditions that may cause hazardous substances or pollutants or contaminants to migrate. The East St. Louis area receives a substantial amount of precipitation (approximately 3 inches per year or more). Most precipitation occurs during Spring and Autumn. In addition, thunderstorms common during the Summer greatly accelerate erosion and runoff. All these conditions contribute to the potential for exposure and for contaminants to migrate off site. The unavailability of other federal or state response mechanisms to respond to the release. IDPH requested assistance from the U.S. EPA Region 5 under the Mississippi Gateway Initiative	below	summarizes the factors applicable to the Western Forge Works site and adjacent properties.
Sampling at nearby residences, adjacent properties, and within the site boundaries shows levels of contamination above the U.S. EPA Region 9 residential soil PRGs for lead, arsenic, and PAHs as discussed in Section 4.0. Exposure pathways consist of (1) direct contact with contaminated soil (2) inhalation of airborne contaminants through windblown particulates. Contaminant levels and locations also suggest potential contaminant migration through the runoff and air pathways. Beca groundwater was not sampled, no conclusion can be drawn about the groundwater pathway from investigation. • Weather conditions that may cause hazardous substances or pollutants or contaminants to migrate. The East St. Louis area receives a substantial amount of precipitation (approximately 3 inches per year or more). Most precipitation occurs during Spring and Autumn. In addition, thunderstorms common during the Summer greatly accelerate erosion and runoff. All these conditions contribute to the potential for exposure and for contaminants to migrate off site. • The unavailability of other federal or state response mechanisms to respond to the release. IDPH requested assistance from the U.S. EPA Region 5 under the Mississippi Gateway Initiative	•	Actual or potential exposure to nearby human populations, animals, or the food chain from hazardous substances or pollutants, or contaminants. Residential properties as well as a school daycare facility, and businesses are located immediately adjacent to the site. In addition, a hospital located within 1 mile of the site. The site is located within a densely populated major metropolitations.
 contamination above the U.S. EPA Region 9 residential soil PRGs for lead, arsenic, and PAHs as discussed in Section 4.0. Exposure pathways consist of (1) direct contact with contaminated soil (2) inhalation of airborne contaminants through windblown particulates. Contaminant levels and locations also suggest potential contaminant migration through the runoff and air pathways. Beca groundwater was not sampled, no conclusion can be drawn about the groundwater pathway from investigation. Weather conditions that may cause hazardous substances or pollutants or contaminants to migrate. The East St. Louis area receives a substantial amount of precipitation (approximately 3 inches per year or more). Most precipitation occurs during Spring and Autumn. In addition, thunderstorms common during the Summer greatly accelerate erosion and runoff. All these conditions contribute to the potential for exposure and for contaminants to migrate off site. The unavailability of other federal or state response mechanisms to respond to the release. IDPH requested assistance from the U.S. EPA Region 5 under the Mississippi Gateway Initiative 		During the investigation, START observed that the site has no fences, warning signs, or other barn to prevent public access.
 migrate. The East St. Louis area receives a substantial amount of precipitation (approximately 3 inches per year or more). Most precipitation occurs during Spring and Autumn. In addition, thunderstorms common during the Summer greatly accelerate erosion and runoff. All these conditions contribute to the potential for exposure and for contaminants to migrate off site. The unavailability of other federal or state response mechanisms to respond to the release. IDPH requested assistance from the U.S. EPA Region 5 under the Mississippi Gateway Initiative 		locations also suggest potential contaminant migration through the runoff and air pathways. Becar groundwater was not sampled, no conclusion can be drawn about the groundwater pathway from t
IDPH requested assistance from the U.S. EPA Region 5 under the Mississippi Gateway Initiative	•	thunderstorms common during the Summer greatly accelerate erosion and runoff. All these
	•	IDPH requested assistance from the U.S. EPA Region 5 under the Mississippi Gateway Initiative
		•
•		
		,
		-

Ũ

B

6.0 SUMMARY

The Western Forge Works site is located in a mixed residential and commercial area with nearby hospitals,
schools, and a daycare center. The analytical results and field screening data indicate that approximately 50
percent of the site and properties immediately adjacent to the site contain soil with elevated lead
concentrations exceeding the U.S. EPA PRGs for residential soils as discussed. Analytical results show that
other compounds are present at concentrations exceeding their PRGs as well, but the extent of such
contamination cannot be determined from site assessment data. Lead-contaminated soil present at various
properties surrounding the site suggests that contamination is migrating off site. The data suggest that the
source of contamination is near the site, but it cannot be proven that the site itself is the source. The site is not
secure and is open to public access.

This investigation shows that the Western Forge Works site and adjacent properties pose a direct threat to human health and the environment and therefore meet the criteria for initiating a removal action as outlined in Paragraph (b)(2) of 40 CFR, Section 300.415, for the reasons discussed in Section 5.0.

APPENDIX A PHOTOGRAPHIC LOG (Two Pages)

Photograph No.: 1

TDD Number: S05-0104-017

Location:

Western Forge Works

Subject:

View across former site location toward residences along 16th Street

Orientation: Northwest

Orientation: Northeast

Date: 25 Apr 01

Date: 25 Apr 01

Photograph No.: 2

TDD Number:

S05-0104-017


Location:

Western Forge Works

Subject:

View across former site location toward businesses and residences on east side

Photograph No.: 3

TDD Number: S

S05-0104-017

Location:

Western Forge Works

Subject:

Western boundary of former site looking toward residences along 18th Street

Orientation: East

Date: 25 Apr 01

APPENDIX B **VALIDATED ANALYTICAL RESULTS** (31 Sheets)

200 E. Randolph Drive, Suite 4700 ♦ Chicago, IL 60601 ♦ (312) 856-8700 ♦ FAX (312) 938-0118

MEMORANDUM

Date:

14 Jun 01

To:

Joe Parish, Project Manager, Tetra Tech EM Inc. (Tetra Tech) Superfund Technical

Assessment and Response Team (START) for Region 5

From:

Harry Ellis, Chemist, Tetra Tech START for Region 5

Subject:

Data Validation for

Western Forge Works Site East St. Louis, Illinois

Analytical Technical Direction Document (TDD) No. S05-0104-023

Project TDD No. S05-0104-017

Laboratory: Ennvironmetrics, Inc. (Environmetrics), St. Louis, Missouri

Work Order No. 9912/5598

Volatile Organic Compound (VOC) Analysis of 2 Soil Samples, Semivolatile Organic

Compound (SVOC) Analysis of 2 Soil Samples, Polychlorinated Biphenyl (PCB) Analysis of

1 Soil Sample, Total Metals Analysis of 10 Soil Samples, and Toxicity Characteristic

Leaching Procedure (TCLP) Lead Analysis of 2 Soil Samples

1.0 INTRODUCTION

The Tetra Tech START for Region 5 validated VOC, SVOC, and TCLP lead analytical data for 2 soil samples, PCB analytical data for 1 soil sample, and total metals analytical data for 10 soil samples collected on 25 Apr 01 during a site assessment of the Western Forge Works site in East St. Louis, Illinois. The samples were analyzed under the above-referenced work orders by Environmetrics using U.S. Environmental Protection Agency (U.S. EPA) SW-846 Method 8260 for VOC analysis, SW-846 Method 8270 for SVOC analysis, SW-846 Method 8082 for PCB analysis, SW-846 Methods 6010 and 7471 for total metals analysis, and SW-846 Methods 1311 and 6010 for TCLP lead analysis.

Data Validation for Western Forge Works Site Analytical TDD No. S05-0104-023 Project TDD No. S05-0104-017 Page 2

The data were validated in general accordance with U.S. EPA's "Contract Laboratory Program National Functional Guidelines for Organic Data Review" dated Oct 99 and "Contract Laboratory Program National Functional Guidelines for Inorganic Data Review" dated Feb 94. Organic data validation consisted of a review of the following quality control (QC) parameters: holding times, gas chromatograph/mass spectrometer (GC/MS) instrument performance check, initial and continuing calibrations, blank results, surrogate results, matrix spike and matrix spike duplicate (MS/MSD) sample results, laboratory control sample (LCS) results, internal standard results, and target compound identification. Inorganic data validation consisted of a review of the following QC parameters: holding times, initial and continuing calibrations, blank results, LCS results, and MS/MSD results.

Section 2.0 discusses the results of the organic data validation, Section 3.0 discusses the results of the inorganic data validation, and Section 4.0 presents an overall assessment of the data. The attachment to this memorandum contains Environmetric's summary of analytical results, including START's handwritten data qualifications where warranted.

2.0 ORGANIC DATA VALIDATION RESULTS

The results of START's data validation are summarized below in terms of the QC parameters reviewed. The data qualifiers below were applied to the sample analytical results as appropriate (see the attachment).

- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- J The analyte was positively identified. The associated numerical value is the approximate
 concentration of the analyte in the sample.

Data Validation for Western Forge Works Site Analytical TDD No. S05-0104-023 Project TDD No. S05-0104-017 Page 3

2.1 HOLDING TIMES

All samples were analyzed within the established or recommended holding time limits of 14 days for VOCs, and 7 days to extraction and 40 days to analysis from extraction for SVOCs and PCBs.

2.2 GC/MS INSTRUMENT PERFORMANCE CHECK

The bromofluorobenzene instrument performance check met the QC abundance criteria for the VOC analyses. The decafluorotriphenylphosphine instrument check met the QC abundance criteria for the SVOC analyses.

2.3 INITIAL AND CONTINUING CALIBRATIONS

For the VOC and SVOC analyses, the relative standard deviation (RSD) from the initial calibration was within the QC limit of less than or equal to 30 percent for all target compounds. Many of the continuing calibration results for the VOC and SVOC analyses were within the QC limit of less than or equal to 25 percent difference (% D) between the initial calibration relative response factor and the continuing calibration relative response factor. However, the following VOCs had excessive %D results in the continuing calibration: chloromethane, bromomethane, methyl iodide, acrylonitrile, vinyl acetate, methyl-t-butyl ether, 2-butanone, carbon tetrachloride, 2-chloroethylvinyl ether, cis-1,3-dichloropropene, trans-1,3-dichloropropene, chlorodibromomethane, 1,2-dibromoethane, bromoform, 4-methyl-2-pentanone, 1,1,1,2-tetrachloroethane, trans-1,4-dichloro-2-butene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, and 1,4-dichlorobenzene. The SVOC compounds 2,4-dinitrophenol and benzidine also had excessive %D results in the continuing calibration. None of these compounds were detected in the investigative samples. The reporting limits are flagged "UJ" to indicate that they are estimates.

For the PCB analyses, all initial and continuing calibration results were within their respective QC limits.

	Data Validation for Western Forge Works Site
	Analytical TDD No. S05-0104-023 Project TDD No. S05-0104-017 Page 4
	2.4 BLANK RESULTS
Ц	For the VOC, SVOC, and PCB analyses, method blanks were run with the analytical batch and in the
0	proper sequence. No target analytes were detected in the blanks at concentrations exceeding the instrument detection limit.
	2.5 SURROGATE RESULTS
3	
Ü	Recoveries for the surrogates were within the QC limits specified by the laboratory for the VOC and SVOC analyses. For the PCB analysis, recovery of the second surrogate, decachlorobiphenyl, was 216
٠ ٦	percent, above the QC limits of 26 to 152 percent. Inspection of the chromatogram showed interference
\Box	from nontarget compounds; therefore, no qualifications are warranted.
	2.6 MS/MSD RESULTS
	MS and MSD analyses were not performed on samples for VOC, SVOC, or PCB analysis.
<u>Ö</u> ,	2.7 LCS RESULTS
	An LCS was analyzed along with the samples in each analytical group, and results were within the respective QC limits specified by the laboratory.
Î	2.8 INTERNAL STANDARD RESULTS
•	For the SVOC analyses, the area counts for the internal standards were within the QC limits of -50
	percent to $+100$ percent from the calibration standard. For both the VOC and SVOC analyses, the retention times of the internal standards were within the QC limit of \pm 30 seconds. However, for the

	Data Validation for Western Forge Works Site Analytical TDD No. S05-0104-023 Project TDD No. S05-0104-017 Page 5
	VOC analyses, all internal standards had area counts below the lower QC limit. Re-analysis yielded very similar results. The reported data are from the reanalyses. Because surrogate recoveries, which are calculated from the internal standard areas, were within QC limits, the quantitative uncertainty from this interference probably is not excessive. All positive VOC results are flagged "J" to indicate that their concentrations are estimated. Some VOC and SVOC results were already flagged "J" by the laboratory because they are below the laboratory reporting limit, which corresponds to the lowest calibration standard. These results are not further qualified. 2.9 TARGET COMPOUND IDENTIFICATION
	Mass spectra for detected VOCs and SVOCs in the samples matched those of the mass spectra for the standards. Nontarget SVOCs were also reported and appeared to be aromatic and alkylaromatic hydrocarbons similar in nature to the detected target compounds.
	3.0 INORGANIC DATA VALIDATION RESULTS
[] []	The results of START's data validation are summarized below in terms of the QC parameters reviewed. The laboratory's qualifiers were modified to match those for the organic data.
.[]	3.1 HOLDING TIMES
	All samples were analyzed within the holding time limits of 6 months for metals and 28 days for mercury.
	3.2 INITIAL AND CONTINUING CALIBRATIONS

(
Data Validation for
Western Forge Works Site Analytical TDD No. S05-0104-023 Project TDD No. S05-0104-017 Page 6
The recoveries during the initial and continuing calibrations were within the QC limits of 80 to 120 percent for mercury and 90 to 110 percent for all other metals.
3.3 BLANK RESULTS
Initial calibration blanks, continuing calibration blanks, and preparation blanks were run with each
analytical batch. Iron and sodium were detected in the blanks above the laboratory reporting limits, but neither is a target metal for this project. No qualifications are warranted.
3.4 LCS RESULTS
An LCS was analyzed with each analytical batch. All LCS results were within QC limits specified by the laboratory.
3.5 MS/MSD RESULTS
MS and MSD analyses were not performed on samples for inorganic analysis.
4.0 OVERALL ASSESSMENT OF DATA
The overall quality of the data generated by Environmetrics is acceptable for use as qualified.

	ATTACHMENT
	ENVIRONMETRICS SUMMARY OF ANALYTICAL RESULTS (23 Sheets)
	a a constant of the constant o
П	

]	•
],	
]	
]	-
]	
]	·
	-
]	
	ATTACHMENT ENVIRONMETRICS SUMMARY OF ANALYTICAL RESULTS
<u>.</u>	(23 Sheets)
	· ·
	•

TETRA TECH EM, INC. 11116 SOUTHTOWNE SQUARE, SUITE 303 ST. LOUIS, MO 63123

environmetries, inc.

11401 Moog Drive St. Louis, MO 63146

(314) 432-0550

ATTN: ART CURRIER

INVOICE: 53994 PO: O1LG-P0029

PROJECT NO: G9009 L0104017, WESTERN FORGE

ANALYSIS RESULTS

SAMPLE ID: 023-01

LAB ID: 9912005598-001

DATE COLLECTED: 04/25/01 16:30

DATE RECEIVED: 04/27/01

TEST PERFORMED	METHOD OF ANALYSIS	<u>RESULTS</u>	<u>ANALYST</u>
TOTAL ARSENIC	SW-846 6010A	9.93 ₽′3 mg/Kg	05/10/01 J.T
TOTAL BARIUM	SW-846 6010A	277 mg/Kg	
TOTAL CADMIUM	SW-846 6010A	3.82 B mg/Kg	
TOTAL CHROMIUM	SW-846 6010A	16.5 mg/Kg	05/11/01 J.T
TOTAL LEAD	SW-846 6010A	2513 mg/Kg	05/10/01 J.T
TOTAL MERCURY	SW-846 7471A	0.7 mg/Kg	
TOTAL SELENIUM	SW-846 6010A	<4.7 Y mg/Kg	
TOTAL SILVER	SW-846 6010A	<0.6 Ų mg/Kg	
		• -	

emvirohmetrics, inc. TETRA TECH EM, INC. 11116 SOUTHTOWNE SQUARE, SUITE 303 11401 Moog Drive ST. LOUIS, MO 63123 St. Louis, MO 63146 ATTN: ART CURRIER (314) 432-0550 INVOICE: 53994 PO: O1LG-P0029 PROJECT NO: G9009 L0104017, WESTERN FORGE **ANALYSIS RESULTS SAMPLE ID:** 023-02 LAB ID: 9912005598-002 DATE COLLECTED: 04/25/01 16:40 DATE RECEIVED: 04/27/01 TEST PERFORMED METHOD OF ANALYSIS RESULTS ANALYST 05/10/01 J.T SW-846 6010A 11.5 **B 3** mg/Kg TOTAL ARSENIC 269 TOTAL BARIUM SW-846 6010A mg/Kg 1.86 B 3 mg/Kg TOTAL CADMIUM SW-846 6010A TOTAL CHROMIUM SW-846 6010A 25.1 mg/Kg 05/11/01 J.T TOTAL LEAD 1083 mg/Kg 05/10/01 J.T SW-846 6010A TOTAL MERCURY SW-846 7471A 0.7 mg/Kg <4.7 4 mg/Kg SW-846 6010A TOTAL SELENIUM SW-846 6010A TOTAL SILVER <0.6 u mg/Kg B = Reported value is greater than the Method Detection Limit (MDL) but less than the Practical Quantitation Limit (PQL).

TETRA TECH EM, INC. 11116 SOUTHTOWNE SQUARE, SUITE 303 environmetries, inc. 1.1401 Moog Drive ST. LOUIS, MO 63123 St. Louis, MO 63146 ATTN: ART CURRIER (314) 432-0550 INVOICE: 53994 PO: O1LG-P0029 PROJECT NO: G9009 L0104017, WESTERN FORGE **ANALYSIS RESULTS SAMPLE ID:** 0,23-03 LAB ID: 9912005598-003 DATE COLLECTED: 04/25/01 17:00 DATE RECEIVED: 04/27/01 TEST PERFORMED METHOD OF ANALYSIS **ANALYST** RESULTS TOTAL ARSENIC SW-846 6010A 10.6 **B** 1 mg/Kg 05/10/01 J.T mg/Kg TOTAL BARIUM SW-846 6010A 231 3.84 **B** 7 mg/Kg SW-846 6010A TOTAL CADMIUM TOTAL CHROMIUM SW-846 6010A 05/11/01 J.T 13.4 mq/Kq 05/10/01 J.T TOTAL LEAD SW-846 6010A 804 mg/Kg TOTAL MERCURY SW-846 7471A 1.8 mg/Kg TOTAL SELENIUM SW-846 6010A <4.7 **Y** mg/Kg TOTAL SILVER SW-846 6010A <0.6 u mg/Kg 11 1 4- 01 B = Reported value is greater than the Method Detection Limit (MDL) but less than the Practical Quantitation Limit (PQL).

ENVIRONMETRICS, IMC. TETRA TECH EM, INC. 11116 SOUTHTOWNE SQUARE, SUITE 303 11401 Moog Drive ST. LOUIS, MO 63123 St. Louis, MO 63146 ATTN: ART CURRIER (314) 432-0550 INVOICE: 53994 PO: O1LG-P0029 PROJECT NO: G9009 L0104017, WESTERN FORGE ANALYSIS RESULTS **SAMPLE ID:** 023-04 LAB ID: 9912005598-004 **DATE COLLECTED:** 04/25/01 17:10 DATE RECEIVED: 04/27/01 TEST PERFORMED METHOD OF ANALYSIS RESULTS **ANALYST** 10.3 **2** 7 mg/Kg 05/10/01 J.T SW-846 6010A TOTAL ARSENIC SW-846 6010A TOTAL BARIUM 202 mg/Kg TOTAL CADMIUM SW-846 6010A 5.23 mg/Kg TOTAL CHROMIUM SW-846 6010A 141 mg/Kg 05/11/01 J.T TOTAL LEAD SW-846 6010A mg/Kg 05/10/01 J.T 890 TOTAL MERCURY SW-846 7471A 0.3 mg/Kg 8.77 **B-**3 SW-846 6010A TOTAL SELENIUM mq/Kq SW-846 6010A TOTAL SILVER <0.6 **u** mg/Kg B = Reported value is greater than the Method Detection Limit (MDL) but less than the Practical Quantitation Limit (PQL).

TETRA TECH EM, INC. 11116 SOUTHTOWNE SQUARE, SUITE 303 ST. LOUIS, MO 63123

environmetrics, inc.

1 401 Moog Drive St. Louis, MO 63146 (314) 432-0550

ATTN: ART CURRIER

INVOICE: 53994 PO: O1LG-P0029

PROJECT NO: G9009 L0104017, WESTERN FORGE

ANALYSIS RESULTS

SAMPLE ID: 023-05

LAB ID: 9912005598-005
DATE COLLECTED: 04/25/01 17:11
DATE RECEIVED: 04/27/01

TEST PERFORMED	METHOD OF ANALYSIS	<u>RESULTS</u>	<u>ANALYST</u>
TOTAL ARSENIC	SW-846 6010A	14.2 J mg/Kg	05/10/01 J.T
TOTAL BARIUM	SW-846 6010A	350 mg/Kg	
TOTAL CADMIUM	SW-846 6010A	4.14 mg/Kg	
TOTAL CHROMIUM	SW-846 6010A	12.2 mg/Kg	05/11/01 J.T
TOTAL LEAD	SW-846 6010A	5720 mg/Kg	05/10/01 J.T
TOTAL MERCURY	SW-846 7471A	0.6 mg/Kg	
TOTAL SELENIUM	SW-846 6010A	<4.7 Y mg/Kg	
TOTAL SILVER	SW-846 6010A	<0.6 u mg/Kg	

TETRA TECH EM, INC. environmetrics, inc. 11116 SOUTHTOWNE SQUARE, SUITE 303 11401 Moog Drive ST. LOUIS, MO 63123 St. Louis, MO 63146 ATTN: ART CURRIER (314) 432-0550 **INVOICE:** 53994 PO: O1LG-P0029 PROJECT NO: G9009 L0104017, WESTERN FORGE **ANALYSIS RESULTS SAMPLE ID: 023-06** LAB ID: 9912005598-006 DATE COLLECTED: 04/25/01 17:17 DATE RECEIVED: 04/27/01 TEST PERFORMED METHOD OF ANALYSIS RESULTS ANALYST SW-846 1311/6010A 05/07/01 J.T TCLP LEAD 1.93 mg/L 10 & J mg/Kg TOTAL ARSENIC SW-846 6010A 05/10/01 J.T TOTAL BARIUM SW-846 6010A 344 mq/Kq TOTAL CADMIUM SW-846 6010A 2.79 B 3 mg/Kg TOTAL CHROMIUM SW-846 6010A 9.09 mg/Kg 05/11/01 J.T TOTAL LEAD SW-846 6010A 05/10/01 J.T 3696 mg/Kg TOTAL MERCURY SW-846 7471A 0.7 mq/Kq <4.7 **U** mg/Kg TOTAL SELENIUM SW-846 6010A TOTAL SILVER SW-846 6010A <0.6 **u** mg/Kg PH SW-846 9045 7.190 05/01/01 M.U B = Reported value is greater than the Method Detection Limit (MDL) but less than

the Practical Quantitation Limit (PQL).

TETRA TECH EM, INC. 11116 SOUTHTOWNE SQUARE, SUITE 303 ST. LOUIS, MO 63123

Environmetrics, inc.

11401 Moog Drive St. Louis, MO 63146 (314) 432-0550

ATTN: ART CURRIER

INVOICE: 53994 PO: O1LG-P0029

PROJECT NO: G9009 L0104017, WESTERN FORGE

ANALYSIS RESULTS

SAMPLE ID: 023-07

LAB ID: 9912005598-007
DATE COLLECTED: 04/25/01 17:40
DATE RECEIVED: 04/27/01

TEST PERFORMED	METHOD OF ANALYSIS	RESULTS	<u>ANALYST</u>
TCLP LEAD	SW-846 1311/6010A	1.57 mg/L	05/07/01 J.T
TOTAL ARSENIC	SW-846 6010A	13.9 3 mg/Kg	05/10/01 J.T
TOTAL BARIUM	SW-846 6010A	345 mg/Kg	
TOTAL CADMIUM	SW-846 6010A	4.2 mg/Kg	
TOTAL CHROMIUM	SW-846 6010A	15.3 mg/Kg	05/11/01 J.T
TOTAL LEAD	SW-846 6010A	3983 mg/Kg	05/10/01 J.T
TOTAL MERCURY	SW-846 7471A	2.3 mg/Kg	
_ TOTAL SELENIUM	SW-846 6010A	<4.7 4 mg/Kg	
TOTAL SILVER	SW-846 6010A	<0.6 U mg/Kg	
PH	SW-846 9045	7.590	05/01/01 M.U

TETRA TECH EM, INC. 11116 SOUTHTOWNE SQUARE, SUITE 303 ST. LOUIS, MO 63123

environmetrics, inc.

11401 Moog Drive St. Louis, MO 63146 (314) 432-0550

ATTN: ART CURRIER

INVOICE: 53994 PO: O1LG-P0029

PROJECT NO: G9009 L0104017, WESTERN FORGE

ANALYSIS RESULTS

SAMPLE ID: 023-08 **LAB ID:** 9912005598-008

DATE COLLECTED: 04/25/01 18:47

DATE RECEIVED: 04/27/01

TEST PERFORMED METHOD OF ANALYSIS RESULTS ANAL	<u>YST</u>
TOTAL ARSENIC SW-846 6.010A 7.92 2 7 mg/Kg 05/1	0/01 J.T
TOTAL BARIUM SW-846 6010A 203 mg/Kg	•
TOTAL CADMIUM SW-846 6010A 3.71 B mg/Kg	
TOTAL CHROMIUM SW-846 6010A 21.8 mg/Kg 05/1	1/01 J.T
TOTAL LEAD SW-846 6010A 515 mg/Kg 05/1	0/01 J.T
TOTAL MERCURY SW-846 7471A 0.2 mg/Kg	•
TOTAL SELENIUM SW-846 6010A <4.7 W mg/Kg	
TOTAL SILVER SW-846 6010A 0.777 P- 1 mg/Kg	

TETRA TECH EM, INC. 11116 SOUTHTOWNE SQUARE, SUITE 303 ST. LOUIS, MO 63.123

ENVIRONMETRICS, INC.

11401 Moog Drive St. Louis, MO 63146 (314) 432-0550

ATTN: ART CURRIER

INVOICE: 53994 PO: O1LG-P0029

PROJECT NO: G9009 L0104017, WESTERN FORGE

ANALYSIS RESULTS

SAMPLE ID: 023-09

LAB ID: 9912005598-009
DATE COLLECTED: 04/25/01 18:50
DATE RECEIVED: 04/27/01

	TEST PERFORMED	METHOD OF ANALYSIS	RESULTS	<u>ANALYST</u>
	TOTAL ARSENIC	SW-846 6010A	5.67 B-1 mg/Kg	05/10/01 J.T
	TOTAL BARIUM	SW-846 6010A	115 mg/Kg	
ł	TOTAL CADMIUM	SW-846 6010A	3.19 B 7 mg/Kg	05/11/01 T M
	TOTAL CHROMIUM TOTAL LEAD	SW-846 6010A SW-846 6010A	16.9 mg/Kg	05/11/01 J.T 05/10/01 J.T
	TOTAL MERCURY	SW-846 7471A	603 mg/Kg 0.5 mg/Kg	05/10/01 0.1
ł	TOTAL SELENIUM	SW-846 6010A	9.54 B-7 mg/Kg	
	TOTAL SILVER	SW-846 6010A	<0.6 u mg/Kg	
			4 • •	

TETRA TECH EM, INC. 11116 SOUTHTOWNE SQUARE, SUITE 3:03 ST. LOUIS, MO 63123 environmetrics, inc.

1/1401 Moog Drive St. Louis, MO 63/146 (314) 432-0550

ATTN: ART CURRIER

INVOICE: 53994 PO: O1LG-P0029

PROJECT NO: G9009 L0104017, WESTERN FORGE

ANALYSIS RESULTS

SAMPLE ID: 023-10

LAB ID: 9912005598-010

DATE COLLECTED: 04/25/01 19:00

DATE RECEIVED: 04/27/01

	TEST PERFORMED	METHOD OF ANALYSIS	RESULTS	ANALYST
	TOTAL ARSENIC	SW-846 6010A	4.13 P 7 mg/Kg	05/10/01 J.T
i	TOTAL BARIUM	SW-846 6010A	206 mg/Kg	
ŀ	TOTAL CADMIUM	SW-846 6010A	6.38 mg/Kg	
-	TOTAL CHROMIUM	SW-846 6010A	9.37 mg/Kg	05/11/01 J.T
	TOTAL LEAD	SW-846 6010A	1150 mg/Kg	05/10/01 J.T
	TOTAL MERCURY	SW-846 7471A	0.6 mg/Kg	
•	TOTAL SELENIUM	SW-846 6010A	<4.7 U mg/Kg	
	TOTAL SILVER	SW-846 6010A	<0.6 U mg/Kg	

B = Reported value is greater than the Method Detection Limit (MDL) but less than the Practical Quantitation Limit (PQL).

11116 SOUTHTOWNE SQUARE, SUITE 303 ST. LOUIS, MO 63123

11401 Moog Drive St. Louis, MO 63146 (314) 432-0550

environmetries, inc.

INVOICE: 53994

ATTN: ART CURRIER

PROJECT NO: G9009 L0104017, WESTERN FORGE

PO: O1LG-P0029

VOLATILE ORGANIC COMPOUNDS CAPILLARY COL METHOD 8260IX PAGE One

SAMPLE ID: 023-06 **LAB ID:** 9912/5598-006

			PRACTICAL QUANTITATION	
	CAS NUMBI	r D	LIMIT _µg/Kg_	RESULTS
	CAS NUMBI	<u>ER</u>	<u> </u>	цд/Кд
(2)	75-71-8	Dichlorodifluoromethane	5	U
(2)	74-87-3	Chloromethane	10	Ū- 3
(2)	75-01-4	Vinyl chloride	5	υ
(2)	74-83-9	Bromomethane	5	υ σ
(2)	75-00-3	Chloroethane	5	บ
(2)	75-69-04	Trichlorofluoromethane	5	9.2
(2)	75-35-4	1,1-Dichloroethene	5	ט יי
(2)	76-13-1	1,1,2-Trichloro-1,2,2-	5	Ū
, ,		trifluoroethane	-	_
(2)	67-64-1	Acetone	20	140 🏅
(2)	108-05-4	Vinyl Acetate	10	υß
(2)	74-88-4	Methyl Iodide	5	บรั
(2)	75-15-0	Carbon disulfide	10	บ
(2)	107-05-1	Allyl Chloride	5	U
(2)	75-05-8	Acetonitrile	10	บ
(2)	75-09-2	Methylene chloride	20	110 3
(2)	107-13-1	Acrylonitrile	10	υŽ
(2)	1634-04-4	Methyl tert butyl ether	10	U 3
(2)	156-60-5	trans-1,2-Dichloroethene	. 5	U
(2)	75-34-3	1,1-Dichloroethane	5	U
(2)	107-02-8	Acrolein	10	υ
(2)	156-59-2	cis-1,2-Dichloroethene	5	U
(2)	78-93-3	2-Butanone (MEK)	5	UJ
(2)	594-20-7	2,2-Dichloropropane	5 .	U
(2)	107-12-0	Proprionitrile	5 %	U
(2)	126-98-7	Methacrylonitrile	5	U
(2)	74-97-5	Bromochloromethane	5	Ü
(2)	67-66-3	Chloroform	5	U.
(2)	71-55-6	1,1,1-Trichloroethane	5	20 🦳
(2)	563-58-6	1,1-Dichloropropene	5	υ
(2)	56-23-5	Carbon tetrachloride	5	U 🎜
(2)	107-06-2	1,2-Dichloroethane	5	U
(2)	71-43-2	Benzene	5	ť
(2)	79-01-6	Trichloroethene	5	U
(2)	78-87-5	i,2-Dichloropropane	5	U
(2)	80-62-6	Methyl Methacrylate	5	Ū
(2)	123-91-1	1,4-Dioxane	5	U
(2)	74-95-3	Dibromomethane	5	Ū
(2)	78-83-1	Isobutyl Alcohol	10	U

11 June 1

11116 SOUTHTOWNE SQUARE, SUITE 303

ST. LOUIS, MO 63123 ATTN: ART CURRIER **ENVIRONMETRICS**, 目前Ge 11401 Moog Drive St. Louis, MO 63146 (314) 432-0550

11 Jun DI

INVOICE: 53994

PROJECT NO: G9009 L0104017, WESTERN FORGE

PO: O1LG-P0029

VOLATILE ORGANIC COMPOUNDS CAPILLARY COL METHOD 8260IX PAGE Two

PRACTICAL OUANTITATION

SAMPLE ID: 023-06 **LAB ID:** 9912/5598-006

			PRACTICAL QUANTITATION LIMIT	RESULTS
	CAS NUMBE	<u>R</u>	μg/Kg ·	це/Ке
(0)	25.07.4	Dogwood latter was the con-	•	••
(2)	75-27-4	Bromodichloromethane	5	U_
(2)	10061-02-6	trans-1,3-Dichloropropene	5	n. .2
(2)	108-10-1	4-Methyl-2-pentanone	10	Ωユ
(2)	76-46-9	2-Nitropropane	10	U
(2)	108-88-3	Toluene	5	62 3
(2)	10061-01-5	cis-1,3-Dichloropropene	5	<u>u</u> 3
(2)	97-63-2	Ethyl Methacrylate	5	U
(2)	79-00-5	1,1,2-Trichloroethane	5	U
(2)	127-18-4	Tetrachloroethene	5	U
(2)	142-28-9	1,3-Dichloropropane	5	U
(2)	591-78-6	2-Hexanone	10	U
(2)	124-48-1	Chlorodibromomethane	5	υŢ
(2)	106-93-4	1,2-Dibromoethane	5	σ_Ω
(2)	108-90-7	Chlorobenzene	5	U
(2)	630-20-6	1,1,1,2-Tetrachloroethane	5	n 2
(2)	100-41-4	Ethylbenzene	5	3.3J
(2)	108-38-3	m&p-Xylene	5	8.6 7
(2)	95-47-6	o-Xylene	5	3.5J
(2)	100-42-5	Styrene	5	U
(2)	75-25-2	Bromoform	5	UJ
(2)	98-82-8	Isopropylbenzene	5	U
(2)	79-34-5	1,1,2,2-Tetrachloroethane	5	ับ
(2)	108 -8 6-1	Bromobenzene	5	U
(2)	110-57-6	trans-1,4-Dichloro-2-butene	5	σ_Ω
(2)	96-18-4	1,2,3-Trichloropropane	5	υ
(2)	103-65-1	n-Propylbenzene	5	U
(2)	95-49-8	2-Chlorotoluene	5	ប់
(2)	108-67-8	1,3,5-Trimethylbenzene	5	U
(2)	106-43-4	4-Chlorotoluene	5	U
(2)	98-06-6	t-Butylbenzene	5	Ū
(2)	95-63-6	1,2,4-Trimethylbenzene	5	4.0J
(2)	135-98-8	sec-Butylbenzene	5	U
(2)	541-73-1	1,3-Dichlorobenzene	5	ับ ร
(2)	99-87-6	p-lsopropyltolùene	5	บั
(2)	106-46-7	1,4-Dichlorobenzene	5	บัว
(2)	95-50-1	1,2-Dichlorobenzene	5	_
(2)	104-51-8	n-Butylbenzene	5	บ บ ว
(2)	96-12-8	1,2-Dibromo-3-chloropropane	5	U
(2)	120-82-1	1,2,4-Trichlorobenzene	5	Ū
(2)	140-07-1	1,2,7-1116111010061126116	· · · · · · · · · · · · · · · · · · ·	·U

11116 SOUTHTOWNE SQUARE, SUITE 303

ST. LOUIS, MO 63123 ATTN: ART CURRIER EMVIRONMETRICS, INC.

11401 Moog Drive St. Louis, MO 63146 (314) 432-0550

INVOICE: 53994

PROJECT NO: G9009 L0104017, WESTERN FORGE

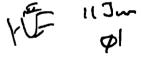
PO: O1LG-P0029

VOLATILE ORGANIC COMPOUNDS CAPILLARY COL METHOD 82601X

METHOD 8260IX PAGE Three

SAMPLE ID: 023-06 **LAB ID:** 9912/5598-006

	CAS NUMBER		PRACTICAL QUANTITATION LIMIT <u>µg/Kg</u>	RESULTS µg/Kg
(2)	87-68-3	Hexachlorobutadiene	10	U
(2)	91-20-3	Naphthalene	10	บ
(2)	87-61-6	1,2,3-Trichlorobenzene	5	U
(2)	110-75-8	2-Chloroethyl vinyl ether	10	כ ט


U = UNDETECTED

B = PRESENT IN BLANK

L = DETECTED BUT BELOW BRA

J = DETECTED, BUT BELOW PRACTICAL QUANTITATION LIMIT

DATE COLLECTED 04/25/01 17:17
DATE RECEIVED: 04/27/01
DATE ANALYZED 05/06/01
ANALYST: R.R

environmetrics. Inc. TETRA TECH EM, INC. 11116 SOUTHTOWNE SQUARE, SUITE 303 11401 Moog Drive ST. LOUIS, MO 63123 St. Louis, MO 63146 ATTN: ART CURRIER (314) 432-0550 **INVOICE: 53994** PROJECT NO: **G9009 L0104017, WESTERN FORGE** PO: OlLG-P0029 VOLATILE ORGANIC COMPOUNDS CAPILLARY COL METHOD 8260IX PAGE One **SAMPLE ID: 023-07** LAB ID: 9912/5598-007 PRACTICAL QUANTITATION LIMIT **RESULTS CAS NUMBER** μg/Kg μg/Kg (2) 75-71-8 Dichlorodifluoromethane 5 U (2) 74-87-3 Chloromethane 10 UI (2) 75-01-4 Vinvl chloride 5 U (2)74-83-9 Bromomethane 5 UJ (2) 75-00-3 Chloroethane 5 U (2) Trichlorofluoromethane 75-69-04 5 5.5 (2) 75-35-4 1.1-Dichloroethene 5 U (2) 76-13-1 1,1,2-Trichloro-1,2,2-5 U trifluoroethane (2)67-64-1 Acetone 20 36 3 (2) 108-05-4 Vinyl Acetate 10 UZ (2)74-88-4 Methyl Iodide ロコ 5 (2) 75-15-0 Carbon disulfide 10 U (2) Allyl Chloride 107-05-1 5 U (2) 75-05-8 Acetonitrile 10 U (2) 75-09-2 Methylene chloride 20 73 -(2) 107-13-1 Acrylonitrile บร 10 (2) 1634-04-4 Methyl tert butyl ether 10 UJ (2) 156-60-5 trans-1,2-Dichloroethene 5 U (2) 75-34-3 1,1-Dichloroethane 5 U (2) 107-02-8 Acrolein 10 U (2)156-59-2 cis-1,2-Dichloroethene 5 υ (2) 78-93-3 2-Butanone (MEK) 5 UJ (2) 594-20-7 2,2-Dichloropropane 5 U (2)Proprionitrile 107-12-0 5 U (2) 126-98-7 Methacrylonitrile 5 U (2)74-97-5 Bromochloromethane 5 U (2)67-66-3 Chloroform 5 U (2)71-55-6 1,1,1-Trichloroethane 5 14 3 (2)563-58-6 1,1-Dichloropropene 5 U (2) 56-23-5 Carbon tetrachloride 5 UT (2)107-06-2 1.2-Dichloroethane 5 U (2) 71-43-2 Benzene 5 U (2) 79-01-6 Trichloroethene 5 U (2) 78-87-5 1,2-Dichloropropane 5 U (2) 80-62-6

Methyl Methacrylate

1.4-Dioxane

Dibromomethane

Isobutyl Alcohol

(2)

(2)

(2)

123-91-1

74-95-3

78-83-1

11 Jump1

U

U

U

U

5

5

5 ~

10

11116 SOUTHTOWNE SQUARE, SUITE 303

ST. LOUIS, MO 63123 ATTN: ART CURRIER ENVIRONMETRICS, INC.

11401 Moog Drive
St. Louis, MO 63146
(314) 432-0550

11 Jap1

INVOICE: 53994

PROJECT NO: G9009 L0104017, WESTERN FORGE

PO: O1LG-P0029

VOLATILE ORGANIC COMPOUNDS CAPILLARY COL METHOD 82601X PAGE Two

SAMPLE ID: 023-07 **LAB ID:** 9912/5598-007

	CAS NUMBE	<u>R</u>	PRACTICAL QUANTITATION LIMIT μg/Kg	RESULTS _ µg/Kg
(2)	75-27-4	Bromodichloromethane	5	บ
(2)	10061-02-6	trans-1,3-Dichloropropene	5	Uゴ
(2)	108-10-1	4-Methyl-2-pentanone	10	υŽ
(2)	76-46-9	2-Nitropropane	10	บ
(2)	108-88-3	Toluene	5	60 3
(2)	10061-01-5	cis-1,3-Dichloropropene	5	U 3
(2)	97-63-2	Ethyl Methacrylate	5	บ
(2)	79-00-5	1,1,2-Trichloroethane	5	บ
(2) `	127-18-4	Tetrachloroethene	5	บ
(2)	142-28-9	1,3-Dichloropropane	5	Ū
(2)	591-78-6	2-Hexanone	10	Ū
(2)	124-48-1	Chlorodibromomethane	5	ŪJ
(2)	106-93-4	1,2-Dibromoethane	5	UI
(2)	108-90-7	Chlorobenzene	5	บ
(2)	630-20-6	1,1,1,2-Tetrachloroethane	5	U 🗷
(2)	100-41-4	Ethylbenzene	· 5	3.9J •
(2)	108-38-3	m&p-Xylene	5	11 丁
(2)	95-47-6	o-Xylene	5	4.5J
(2)	100-42-5	Styrene	5	U
(2)	75-25-2	Bromoform	5	υJ
(2)	98-82-8	Isopropylbenzene	5	Ü
(2)	79-34-5	1,1,2,2-Tetrachloroethane	5	Ü
(2)	108-86-1	Bromobenzene	5	Ü
(2)	110-57-6	trans-1,4-Dichloro-2-butene	5	בֿע
(2)	96-18-4	1,2,3-Trichloropropane	5	บั
(2)	103-65-1	n-Propylbenzene	5	Ü
(2)	95-49-8	2-Chlorotoluene	5	บ
(2)	108-67-8	1,3,5-Trimethylbenzene	5	· ບັ
(2)	106-43-4	4-Chlorotoluene	5	บั
(2)	98-06-6	t-Butylbenzene	5	Ü
(2)	95-63-6	1,2,4-Trimethylbenzene	5	5.8 7
(2)	135-98-8	sec-Butylbenzene	5	U
(2)	541-73-1	l,3-Dichlorobenzene	5	ŭ " "
(2)	99-87-6	p-lsopropyltoluene	5	Ω Ω 7
(2)	106-46-7	1,4-Dichlorobenzene	5	₽ .7
(2)	95-50-1	1,2-Dichlorobenzene	5	_
(2)	104-51-8	n-Butylbenzene	5	כט
(2)	96-12-8	1,2-Dibromo-3-chloropropane	5	U
(2)	120-82-1	1,2,4-Trichlorobenzene	5	. U
(-)		-,-,	· · · · · · · · · · · · · · · · · · ·	· ·

TETRA TECH EM, INC. 11116 SOUTHTOWNE SQUARE, SUITE 303

ST. LOUIS, MO 63123 ATTN: ART CURRIER ENVIRONMETRICS, INC.

PRACTICAL QUANTITATION

1.1401 Moog Drive St. Louis, MO 63146 (314) 432-0550

INVOICE: 53994

PROJECT NO: G9009 L0104017, WESTERN FORGE

05/06/01

R.R.

PO: OILG-P0029

DATE ANALYZED:

ANALYST:

VOLATILE ORGANIC COMPOUNDS CAPILLARY COL

METHOD 8260IX PAGE Three

SAMPLE ID: 023-07 LAB ID: 9912/5598-007

	CAS NUMBE	<u>R</u>		LIMIT ug/Kg	RESULTS <u>µg/Kg</u>
(2)	87-68-3	Hexachlorobutadiene		10	U
(2)	91-20-3	Naphthalene		10	บ
(2)	87-61-6	1,2,3-Trichlorobenzene		5	U ·
(2)	110-75-8	2-Chloroethyl vinyl ethe	er	10	υ - Ζ
		su	RROGATE RECOVERY RE	SULTS	*
(2) (2) (2)	460-00-4 17060-07-0 2037-26-5	4-Bromofluorobenzene 1,2-Dichloroethane-d4 Toluene-d8			% RECOVERY 78 106 88
	U = UNDETEC B = PRESENT J = DETECTE	IN BLANK	AL QUANTITATION LIMIT		V
	DATE COLLE	VED: 04/27/01	17:40		u Jun \$1

environmetries, inc.

TETRA TECH EM, INC. 11116 SOUTHTOWNE SQUARE, SUITE 303 ST. LOUIS, MO 63123

11401 Moog Drive St. Louis, MO 63146 (314) 432-0550

ATTN: ART CURRIER

INVOICE: 53994

PROJECT NO: G9009 L0104017, WESTERN FORGE

PO: O1LG-P0029

SEMIVOLATILE COMP. BY GC/MS CAPILLARY COLUMN METHOD 8270 PAGE One

SAMPLE ID: 023-06 **LAB ID:** 9912/5598-006

PARENT ORDER NUMBER: 172843

QUANT FACTOR: 235.49

CAS NUMBE	<u>:R</u>	PRACTICAL QUANTITATION LIMIT <u>µg/KG</u>	RESULTS µg/KG
1-10-86-1	Pyridine	11774	U
62-75-9	n-Nitrosodimethylamine	2355	U
62-53-3	Aniline	2355	U
111-44-4	Bis(2-chloroethyl)ether	2355	U
95-57-8	2-Chlorophenol	2355	U
108-95-2	Phenol	2355	U
541-73-1	1,3-Dichlorobenzene	2355	U
106-46-7	1,4-Dichlorobenzene	2355	U
95-50-1	1,2-Dichlorobenzene	2355	U
100-51-6	Benzyl alcohol	2355	U
108-60-1	2,2-oxybis(1-Chloropropane)	2355	U
95-48-7	2-Methylphenol	2355	U
67-72-1	Hexachloroethane	2355	U
621-64-7	N-Nitrosodi-n-propylamine	23'55	U
106-44-5	4-Methylphenol	2355	ប
98-95-3	Nitrobenzene	2355	U
78-59-1	Isophorone	2355	U
88-75-5	2-Nitrophenol	2355	U
105-67-9	2,4-Dimethylphenol	2355	U
111-91-1	Bis(2-chloroethoxy)methane	2355	U
120-83-2	2,4-Dichlorophenol	2355	U
120-82-1	1,2,4-Trichlorobenzene	2355	Ū
91-20-3	Naphthalene	2355	410J
65-85-0	Benzoic acid	2355	υ
106-47-8	4-Chloroaniline	2355	U
87-68-3	Hexachlorobutadiene	2355	U
91-57-6	2-Methylnaphthalene	2355	440J
59-50-7	4-Chloro-3-methylphenol	2355	U
77-47-4	Hexachlorocyclopentadiene	2355	Ü .
88-06-2	2,4,6-Trichlorophenol	2355	Ū `
95-95-4	2,4,5-Trichlorophenol	2355	Ū
91-58-7	2-Chloronaphthalene	23'55	ΰ
88-74-4	2-Nitroaniline	2355	Ü
208-96-8	Acenaphthylene	2355	320J
131-11-3	Dimethyl phthalate	2355	U
606-20-2	2,6-Dinitrotoluene	2355	Ŭ
83-32 - 9	Acenaphthene	2355	Ü

TETRA TECH EM, INC. 11116 SOUTHTOWNE SQUARE, SUITE 303 ST. LOUIS, MO 63123 environmetrics. Inc.

1140/l Moog Drive St. Louis, MO 63146 (3/14) 432-0550

ATTN: ART CURRIER

INVOICE: 53994

PROJECT NO: G9009 L0104017, WESTERN FORGE

PO: O1LG-P0029

SEMIVOLATILE COMP. BY GC/MS CAPILLARY COLUMN METHOD 8270
PAGE Two

SAMPLE ID: 023-06 **LAB ID:** 9912/5598-006

PARENT ORDER NUMBER: 172843

QUANT FACTOR: 0.00

CAS NUMBER	<u>.</u>	PRACTICAL QUANTITATION LIMIT	RESULTS _µg/KG
99-09-2	3-Nitroaniline	2355	U
51-28-5	2,4-Dinitrophenol	2355	C_{Ω}
132-64-9	Dibenzofuran	2355	760J
121-14-2	2,4-Dinitrotoluene	2355	U
100-02-7	4-Nitrophenol	2355	U
86-73-7	Fluorene	2355	460J
7005-72-3	4-Chlorophenyl phenyl ether	2355	U
84-66-2	Diethyl phthalate	2355	U
1'00-01-6	4-Nitroaniline	2355	U
534-52-1	4,6-Dinitro-2-methylphenol	2355	U
86-30-6	N-Nitrosodiphenylamine	2355	υ
103-33-3	Azobenzene (1,2-	2355	U
	Diphenylhydrazine)		
101-55-3	4-Bromophenyl phenyl ether	2355	· U
118-74-1	Hexachlorobenzene	2355	U
1912-24-9	Atrazine	2355	U
87-86-5	Pentachlorophenol	2355	U
85-01-8	Phenanthrene	2355	9100
120-12-7	Anthracene	2355	2200J
86-74-8	Carbazole	2355	880J
15972-60-8	Alachlor	2355	U
84-74-2	Di-n-butyl phthalate	2355	U
206-44-0	Fluoranthene	2355	8900
92-87-5	Benzidine	2355	UI
129-00-0	Pyrene	2355	7200
85-68-7	Butyl benzyl phthalate	2355	U
56-55-3	Benz(a)anthracene	2355	3300
218-01-9	Chrysene	2355	3500
91-94-1	3,3'-Dichlorobenzidine	2355	U
117-81-7	Bis(2-ethylhexyl)phthalate	2355	Ū
117-84-0	Di-n-octyl phthalate	2355	Ū
205-99-2	Benzo(b)fluoranthene	2355	3800
207-08-9	Benzo(k)fluoranthene	2355	1800J
50-32-8	Benzo(a)pyrene	2355	3200
193-39-5	Ideno(1,2,3-cd)pyrene	2355	960J
53-70-3	Dibenz(a,h)anthracene	2355	360J <u>@</u>
191-24-2	Benzo(g,h,i)perylene	2355	9401
	201120(B)11,1/per y tenie	2555	12

	TETRA TECH EM, INC. 11116 SOUTHTOWNE SQUARE, ST. LOUIS, MO 63123	, SUITE 303	environmeti	間隔隔線 関係である II401 Moog Drive St. Louis, MO 63146
П	ATTN: ART CURRIER			(3 4) 432-0550
	INVOICE: 53994 PROJECT NO: G9009 L010401 PO: O1LG-P0029	17, WESTERN F	ORGE	
		TILE COMP. BY METHO PAGE T		
	SAMPLE ID: 023-06 LAB ID: 9912/5598-006			
	PARENT ORDER NUMBER:	172843	QUANT FACTOR :	0.00
	<u>CAS NUMBER</u>		PRACTICAL QUANTITATION LIMIT	N RESULTS _μg/KG_
		SURROGATE RE	COVERY RESULTS	
	321-60-8 2-Fluorobiphenyl 367-12-4 2-Fluorophenol 41.65-60-0 Nitrobenzene-d5 4165-62-2 Phenol-d5 1718-51-0 p-Terphenyl-d14			% RECOVERY 120 73 97 83 102
	11.8-79-6 2,4,6-Tribromopheno	ol		93
	U = UNDETECTED B = PRESENT IN BLANK J = DETECTED, BUT BELOW PRACT	FICAL OUANTITA	TION I IMIT	
	DATE COLLECTED 04/25/01	17:17		
	DATE RECEIVED: 04/27/01 DATE ANALYZED: 05/08/01 ANALYST: J.K.			
0				
0				
Π				

Environmetrics. Inc.

TETRA TECH EM, INC. 11116 SOUTHTOWNE SQUARE, SUITE 303 ST. LOUIS, MO 63123

11404 Moog Drive St. Louis, MO 63146 (314) 432-0550

ATTN: ART CURRIER

INVOICE: 53994

PROJECT NO: G9009 L0104017, WESTERN FORGE

PO: O1LG-P0029

SEMIVOLATILE COMP. BY GC/MS CAPILLARY COLUMN METHOD 8270 PAGE One

SAMPLE ID: 023-07 **LAB ID:** 9912/5598-007

PARENT ORDER NUMBER: 172848

QUANT FACTOR: 438.02

CAS NUMBER		PRACTICAL QUANTITATION LIMIT µg/KG_	RESULTS _µg/KG
110-86-1	Pyridine	21901	U
62-75-9	n-Nitrosodimethylamine	4380	U
62-53-3	Aniline	4380	U
111-44-4	Bis(2-chloroethyl)ether	4380	U
95-57-8	2-Chlorophenol	4380	U
108-95-2	Phenol	4380	U
541-73-1	1,3-Dichlorobenzene	4380	U
106-46-7	1,4-Dichlorobenzene	4380	U
95-50-1	1,2-Dichlorobenzene	4380	U
100-51-6	Benzyl alcohol	4380	บ
108-60-1	2,2-oxybis(1-Chloropropane)	4380	U
95-48-7	2-Methylphenol	4380	บ
67-72-1	Hexachloroethane	4380	บ
621-64-7	N-Nitrosodi-n-propylamine	4380	บ
106-44-5	4-Methylphenol	4380	υ
98-95-3	Nitrobenzene	4380	U
78-59-1	Isophorone	4380	U
88-75-5	2-Nitrophenol	4380	U
105-67-9	2,4-Dimethylphenol	4380	U
141-94-1	Bis(2-chloroethoxy)methane	4380	U
120-83-2	2,4-Dichlorophenol	4380	Ū
120-82-1	1,2,4-Trichlorobenzene	4380 ·	U
91-20-3	Naphthalene	4380	U
65-85-0	Benzoic acid	4380	U
106-47-8	4-Chloroaniline	4380	U
87-68-3	Hexachlorobutadiene	4380 ⁻	U
91-57-6	2-Methylnaphthalene	4380	U
59-50-7	4-Chloro-3-methylphenol	4380	U
77-47-4	Hexachlorocyclopentadiene	4380	U
88-06-2	2,4,6-Trichlorophenol	4380	U
95-95-4	2,4,5-Trichlorophenol	4380	U
91-58-7	2-Chloronaphthalene	4380	U
88-74-4	2-Nitroaniline	4380	ប
208-96-8	Acenaphthylene	4380	U
131-11-3	Dimethyl phthalate	4380	U
606-20-2	2,6-Dinitrotoluene	4380	U
83-32-9	Acenaphthene	4380	Ü

environmetries. Inc. TETRA TECH EM, INC. 11116 SOUTHTOWNE SOUARE, SUITE 303 11401 Moog Drive ST. LOUIS, MO 63123 St. Louis, MO 63:146 (314) 432-0550 ATTN: ART CURRIER **INVOICE: 53994** G9009 L0104017, WESTERN FORGE PROJECT NO: PO: O1LG-P0029 SEMIVOLATILE COMP. BY GC/MS CAPILLARY COLUMN **METHOD 8270 PAGE Two SAMPLE ID: 023-07** LAB ID: 9912/5598-007 PARENT ORDER NUMBER: 172848 0.00 QUANT FACTOR : PRACTICAL QUANTITATION **RESULTS** LIMIT **CAS NUMBER** μg/KG _μg/KG U 99-09-2 3-Nitroaniline 4380 n 2 51-28-5 2,4-Dinitrophenol 4380 U 132-64-9 Dibenzofuran 4380 121-14-2 2.4-Dinitrotoluene 4380 U IJ 100-02-7 4-Nitrophenol 4380 Fluorene U 86-73-7 4380 U 7005-72-3 4-Chlorophenyl phenyl ether 4380 Diethyl phthalate U 84-66-2 4380 100-01-6 4-Nitroaniline 4380 U 534-52-1 4,6-Dinitro-2-methylphenol 4380 U 86-30-6 N-Nitrosodiphenylamine U 4380 U 103-33-3 Azobenzene (1,2-4380 Diphenylhydrazine) 4-Bromophenyl phenyl ether U 101-55-3 4380 118-74-1 Hexachlorobenzene 4380 U U 1912-24-9 Atrazine 4380 U 87-86-5 Pentachlorophenol 4380 85-01-8 Phenanthrene 4700 4380 120-12-7 Anthracene 4380 1000J 86-74-8 Carbazole 4380 U 15972-60-8 Alachlor U 4380 84-74-2 Di-n-butyl phthalate U 4380 Fluoranthene 206-44-0 4380 4700 U Benzidine 92-87-5 4380 129-00-0 Pyrene 4380 4000J 85-68-7 Butyl benzyl phthalate 4380 U 56-55-3 Benz(a)anthracene 4380 1800J 2000J 218-01-9 Chrysene 4380 91-94-1 3,3!-Dichlorobenzidine 4380 U 117-81-7 Bis(2-ethylhexyl)phthalate U 4380 117-84-0 Di-n-octyl phthalate U 4380 205-99-2 Benzo(b)fluoranthene 4380 2100J 207-08-9 Benzo(k)fluoranthene 4380 1100J Benzo(a)pyrene 1700J 50-32-8 4380

193-39-5

53-70-3

194-24-2

Ideno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

11 Jun 4

510J

500J

U

4380

4380

4380

ATTN: ART CURRIER INVOICE: 53994 PROJECT NO: G9009 L0104017, WESTERN FORGE PO: O1LG-P0029	TETRA TECH	TOWNE SQUAR	E, SUITE 303	envirorme	11:401 Moog Driv
NVOICE: 53994 PROJECT NO: G9009 L0104017, WESTERN FORGE PO: O1LG-P0029 SEMIVOLATILE COMP. BY GC/MS CAPILLARY COLUMN METHOD 8270 PAGE Three SAMPLE ID: 023-07 LAB ID: 9912/5598-007 PARENT ORDER NUMBER: 172848 QUANT FACTOR: 0 00 PRACTICAL QUANTITATION LIMIT LIMI	· · · · · · · · · · · · · · · · · · ·				St. Louis, MO 6314 (314) 432-055
METHOD 8270 PAGE Three	NVOICE: 53 PROJECT NO:	994 G9009 L0104	017, WESTERN FO	DRGE	
LAB ID: 9912/5598-007 PARENT ORDER NUMBER: 172848 QUANT FACTOR: 0 00		SEMIVOL	METHOI	8270	N
PRACTICAL QUANTITATION LIMIT RESULT. μg/KG μg/KG	LAB ID: 99	12/5598-007	: 172848		
SURROGATE RECOVERY RESULTS SURROGATE RECOVERY RESULTS SURROGATE RECOVERY RESULTS SURROGATE RECOVERY RESULTS 121 367-12-4 2-Fluorophenol 68 4165-60-0 Nitrobenzene-d5 99 4165-62-2 Phenol-d5 77 1718-51-0 p-Terphenyl-d14 107 118-79-6 2,4,6-Tribromophenol 83 U = UNDETECTED B = PRESENT IN BLANK J = DETECTED, BUT BELOW PRACTICAL QUANTITATION LIMIT DATE COLLECTED: 04/25/01 17-40 DATE RECEIVED: 04/27/01 DATE ANALYZED: 05/08/01					
321-60-8 2-Fluorobiphenyl 121 367-12-4 2-Fluorophenol 68 4165-60-0 Nitrobenzene-d5 99 4165-62-2 Phenol-d5 77 1718-51-0 p-Terphenyl-d14 107 118-79-6 2,4,6-Tribromophenol 83 U = UNDETECTED B = PRESENT IN BLANK J = DETECTED, BUT BELOW PRACTICAL QUANTITATION LIMIT DATE COLLECTED: 04/25/01 17:40 DATE RECEIVED: 04/27/01 DATE ANALYZED: 05/08/01	CAS NUMBER			LIMIT	RESULTS µg/KG
321-60-8 2-Fluorobiphenyl 121 367-12-4 2-Fluorophenol 68 4165-60-0 Nitrobenzene-d5 99 4165-62-2 Phenol-d5 77 1718-51-0 p-Terphenyl-d14 107 118-79-6 2,4,6-Tribromophenol 83 U = UNDETECTED B = PRESENT IN BLANK J = DETECTED, BUT BELOW PRACTICAL QUANTITATION LIMIT DATE COLLECTED: 04/25/01 17-40 DATE RECEIVED: 04/27/01 DATE ANALYZED: 05/08/01			SURROGATE REG	COVERY RESULTS	% DECOVEDV
U = UNDETECTED B = PRESENT IN BLANK J = DETECTED, BUT BELOW PRACTICAL QUANTITATION LIMIT DATE COLLECTED: 04/25/01 17·40 DATE RECEIVED: 04/27/01 DATE ANALYZED: 05/08/01	367-12-4 '4165-60-0 4165-62-2 1718-51-0	2-Fluorophenol Nitrobenzene-d5 Phenol-d5 p-Terphenyl-d14	enol		121 68 99 77 107
DATE RECEIVED: 04/27/01 DATE ANALYZED: 05/08/01	B = PRESENT IN	ED N BLANK	•	TION LIMIT	
	DATE RECEIVE DATE ANALYZ	ED: 04/27/0 ED: 05/08/0	1		
					,
	'				
					•

TETRA TECH EM, INC. 11116 SOUTHTOWNE SQUARE, SUITE 303 ST. LOUIS, MO 63123

ENVIRONMETRICS, 126.

11401 Moog Drive St. Louis, MO 63146 (314) 432-0550

ATTN: ART CURRIER

INVOICE: 53994

G9009 L0104017, WESTERN FORGE PROJECT NO:

PO: O1LG-P0029

PCB METHOD 8082 PAGE One

SAMPLE ID: 023-06 LAB ID: 9912/5598-006

PARENT ORDER NUMBER: 172843

0.00 QUANT FACTOR :

CAS NUMBEI	<u>R</u>	PRACTICAL QUANTITATION LIMIT	RESULTS μg/KG
12674-11-2	A-1016	39	U
1104-28-2	A-1221	39	U
11141-16-5	A-1232	39	บ
53469-21-9	A-1242	39	U
12672-29-6	A-1248	39	U
11097-69-1	A-1254	39	U
11096-82-5	A-1260	39	ប

SURROGATE RECOVERY RESULTS

		% RECOVER
2051-24-3	Decachlorobiphenyl (DCB)	216
877-09-8	2,4,5,6-Tetrachloro-meta-xylene	71
	(TCMX)	

U = UNDETECTED

B = PRESENT IN BLANK

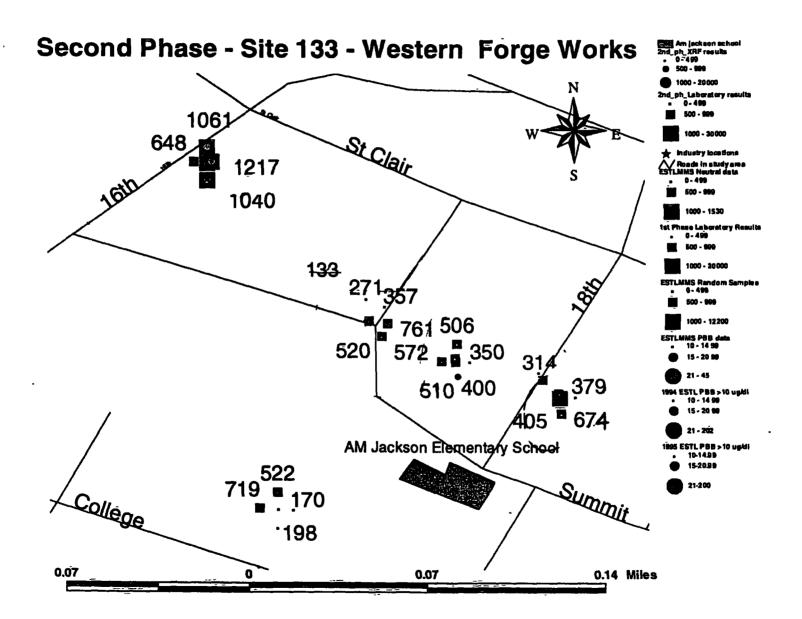
J = DETECTED, BUT BELOW PRACTICAL QUANTITATION LIMIT

17:17

DATE COLLECTED: DATE RECEIVED:

04/25/01

04/27/01


DATE ANALYZED:

ANALYST:

05/10/01

J.K.

].	
	APPENDIX C IDPH SITE INVESTIGATION DATA MAP
	(One Sheet)

